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elliptic problems within

irregular domains
Fully developed channel flow
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Introduction
The analysis of fully developed flow inside ducts is of major relevance to the de-
sign of heat exchange equipment, towards the optimized selection of passages’
shapes with minimum friction and enhanced heat transfer performance. The
solution of laminar flow within irregularly shaped channels is then crucial to the
proper design of compact heat exchangers, as pointed out by Shah and co-
workers[1-4]. Various typical configurations were considered in these studies[1-4]
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a = geometric parameter, as 
defined in Figure 2

a(t) = coefficient of Lt operator, 
equation (6)

b(t) = coefficient of Lt operator, 
equation (6)

C = source team defined in equation
(39)

d(x) = coefficient of L operator, 
equation (7)

Dh = hydraulic diameter
f = friction factor, equation (51)
fk(x) = source friction in boundary 

conditions, equations (4)(5)
h = geometric parameter, as defined

in Figure 2
H = geometric parameter, (H = 1–h)
K(x) = coefficient of L operator, 

equation (6)
m = shape factor, h/a
N = order of truncated system
Ni(t) = normalization integral
P(z) = average pressure at duct cross

section, equation (39)
P(x,t) = source function of equation (1)
Re = Reynolds number
t = space co-ordinate

t0,t1 = limits of t-boundary
T(x,t) = potential (velocity distribution)
Tav = average velocity
x = space co-ordinate
x0(t), x1(t) = limits of x-boundary
y = space co-ordinate (applications)
z = longitudinal co-ordinate

Greek symbols
ακ = coefficient of boundary 

condition, equation (9)
βκ = coefficient of boundary 

condition, equation (9)
γκ = coefficient of boundary 

condition, equation (8)
δκ = coefficient of boundary 

condition, equation (8)
ε = relative error estimator, 

equation (37)
Ki(x,t) = normalized eigenfunction, 

equation (15)
µ = fluid viscosity, equation (39)
µi(t) eigenvalues of problem (2)
φκ(t) = source functions in boundary 

conditions, equations (2)(3)
ψ(µi(t),x) = eigenfunctions of problem (2)

Note: The symbols defined above are subject to alteration on occasion

Nomenclature
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and friction factors, as well as heat transfer coefficients in fully developed flows,
were systematically presented, as obtained from various sources. Different
approximate numerical approaches were employed in obtaining such results, and
no true benchmarking approach is readily available to identify possible
discrepancies among them.

The mathematical formulation for the analysis of fully developed flow
within channels belongs to a class of two-dimensional elliptic diffusion-type
problems defined in irregularly shaped regions. When seeking an analytical
solution to this class of problems, one naturally searches into the classical
solution techniques for diffusion problems, such as the integral transform
approach[5-7]. In fact, for regular regions, i.e. when the duct boundaries
coincide with constant co-ordinate surfaces on the chosen co-ordinate system,
exact solutions are readily obtainable through the classical integral transform
method[5-7]. Still for regular domains, some extensions on the classes of
problems that could be handled were achieved[8-10] by advancing the ideas in
the so-called generalized integral transform technique[7] for the solution of 
a priori non-transformable problems. Later[11-12], these ideas were further
extended to handle a class of irregularly shaped domains, in which the irregular
boundaries could be described as functions of the other independent variables,
for both elliptic and parabolic multidimensional formulations. These specific
solutions for channel flow were then applied in the analysis of a few different
duct shapes[13-15], and quantities of practical interest were obtained under
different geometric arrangements. All these ideas and many other extensions to
classical transformable formulations, handled through the same generalized
approach, were recently compiled in[7], including the analysis of non-linear
problems in heat and fluid flow. Motivated by this success, the present paper is
a follow-up to the developments in[11-15], dealing with the integral transform
approach as applied in the hybrid numerical-analytical solution of elliptic
problems within irregularly shaped domains. First, a more general formulation
is considered, which includes the analysis in reference[11] as a special case, and
recent developments on the computational implementation are also pointed out,
including the automatic global error control feature of this method. Basically,
the original partial differential equation is integrally transformed into an
infinite system of coupled second order ordinary differential equations, for the
transformed potentials in the direction not eliminated through the integral
transformation process. On truncation of this infinite system to a finite order,
reliable solvers for boundary value problems are utilized, as available in well-
tested subroutine packages[16], offering robust schemes for error control. An
adaptive procedure is then implemented, which automatically controls the order
of the truncated system, until the user-prescribed accuracy requirements are
reached, yielding as a by product a global error estimation for the computed
solution, owing to the analytic nature of the final expressions. The use of
convergence acceleration schemes is also discussed, based on previous
developments[7,17-18]. Second, in order to illustrate such aspects and
complement the knowledge base on channel flow, a few different configurations
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are presented here, for which benchmark results were not available or could be
incomplete within the available source data. Therefore, three additional geom-
etries were here analysed, namely, the isosceles triangular duct and segmented
duct configurations of both circular and elliptical cross-sections. Numerical
results for the longitudinal velocity field, as well as for the related friction
factors, were obtained, within prescribed accuracy. Also, the convergence rates
of the proposed eigenfunction expansions are illustrated.

The present approach is readily extendible to non-linear problems, by letting
the source terms in both the original PDE and associated boundary conditions
also depend on the potential itself, as demonstrated in different applications
involving non-linear formulations[7,19-29] handled through this same approach.

Diffusion within irregular domains – formal solution
In this section we consider the analytical solution of steady-state diffusion prob-
lems in a class of irregularly shaped regions, where the boundary defined by
one of the spatial variables can be given as a function of another co-
ordinate[7,11-12]. A reasonably general formulation of a two-dimensional
elliptic problem is adopted, and we let t be the space variable that will not be
transformed through application of the integral transform process, and x is the
space variable that shall be eliminated. Also, let Lt be the linear differential
operator associated with the variable t and let the boundary points in the
variable x be expressed in terms of the space variable t, i.e. x0 ≡ x0(t) and/or x1 ≡
x1(t). Then, the problem formulation (see Figure 1) is given as:

(1)

Figure 1.
Geometry and co-
ordinate system for
problem (1)

x = xx = x

t

0

0 (t) 1 (t)

0t = t
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1t = t
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(2)(3)

(4)(5)

where the operators in the differential equation are given by:

(6)

(7)

and the boundary condition operators are:

(8)

(9)

The general solution to this problem in regular domains is provided in[5-6], by
applying the integral transform technique to remove from system (1) only the
partial derivatives associated with the differential operator L. The system is
then reduced to a decoupled system of second-order, ordinary differential
equations in the space variable t. If the domain is irregular, i.e. if the chosen co-
ordinate system does not coincide with the bounding surfaces, these solutions
are not directly applicable. However, the ideas in the generalized integral
transform technique can be extended to yield analytical solutions to this class
of problems, as now shown.

The appropriate eigenvalue problem is taken as:

(10)

with boundary conditions

(11)(12)

and the solution of this t-dependent eigenvalue problem is assumed to be known
at this point.

The integral transform pair, with a symmetric kernel, is then obtained as:

(13)

(14)
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where

(15)

and the normalization integral is given by:

(16)

We now operate on equation (l) by ∫x0(t)

x1(t)
Ki(x,t) dx, to obtain:

(17)

where,

(18)

and the only untransformed term in equation (17), after application of the inver-
sion formula (14), is rewritten as:

(19)

where,

(20)

(21)

(22)

and dot denotes differentiation with respect to t.
The boundary conditions (4)(5) are now transformed through application of the

operator ∫x0(t)

x1(t)
w(x)Ki(x,t)dx, to yield:
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(23)(24)

where,

(25)(26)

Again, through substitution of the inversion formula (14), the untransformed
term in equations (23)(24), is given by:

(27)

The transformed, complete system is finally given in the form that follows:

(28)

with boundary conditions

(29)(30)

where,

(31)

(32)

(33)

So far the analysis is formal and exact, yielding the above denumerable system
of coupled second-order ordinary differential equations. Therefore, once the
quantities 

—
Ti(t) have been determined, the inversion formula (14) can be utilized

to produce the complete solution. For the sake of obtaining numerical results
from this a priori formal solution, a finite system is considered instead, after
truncation to a sufficiently large order N. Quite accurate results can then be
obtained by the application of well-established algorithms for systems of
ordinary differential equations with boundary conditions at two points[16],
providing an interesting alternative to purely numerical approaches.
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In addition, an approximate analytical solution is constructed by letting j = i
in the  summations of the complete system ((28)(33)). This lowest order solution
is then readily obtained through solution of the following decoupled system:

(34)

(35)(36)

This approximate solution is expected to produce sufficiently accurate results
in the context of applications, being more or less accurate in a certain range of
the parameters that govern the relative magnitudes of the elements in the
coefficients of the differential system.

An analytical iteration of the lowest order solution over the complete system
(28)-(33) can be employed to account approximately for the effects of non-
diagonal elements in matrices Aij(t) and Bij(t), with an expectancy of accuracy
improvement over a wider range of the parameters involved[7, 11-14].

These approximate analytical solutions, although not of central interest in
the present work, find some use in the realm of applications when fully explicit
results are desired without a substantial computational involvement. On the
other hand, the hybrid numerical-analytical solution represented by the
complete solution of system(28)-(33)), allows for fully error-controlled solutions,
since all the intermediate numerical tasks are performed under the user-
prescribed accuracy, but the price must be paid on the computational
implementation.

For improved convergence behaviour of the eigenfunction expansion
proposed, either filtering particular solutions or an integral balance of the
original partial differential equation can be employed, as discussed in[7, 17-18].
Both approaches eliminate, or at least alleviate, the difficulties associated with
non-homogeneous boundary and equation source terms, by accounting for their
contribution to the final solution in an explicit separated form. Either of the two
processes involves essentially an analytical pre-treatment of the original
problem, without significantly altering the computational procedure to be
described in the following section.

Computational procedure
A quite straightforward algorithm can be constructed, including the attractive
feature of automatically controlling the global error in the final solution at any
selected points. To achieve this goal, the semi-analytic nature of this approach
is used in conjunction with well-established subroutines libraries with
intensively tested accuracy control schemes. The basic steps in computation are
as follows:
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(1) The auxiliary eigenvalue problem is solved for the eigenvalues and
related normalized eigenfunctions, either in analytic form, when
applicable, or through the generalized integral transform technique
itself[7].

(2) The transformed boundary conditions are computed, either analytically
or, in a general purpose procedure, through adaptive numerical
integration, such as in subroutines from the IMSL package[16]. Similarly,
those coefficients on the transformed ODE system which are not
dependent on the transformed potentials can be evaluated a priori, and
therefore save some computational effort during the numerical in-
tegration of the ODE system.

(3) The truncated ODE system is then numerically solved through the
appropriate numerical tools. Boundary value problems can be handled
through subroutine DBVPFD[16], which is a more recent implementation
of the well-known PASVA3 code, an adaptive finite-difference program
for first order non-linear boundary value problems. This subroutine
offers an interesting combination of accuracy control, simplicity in use
and reliability, with some compromise in speed and memory require-
ments when compared to dedicated schemes. In either case, a pre-
estimate for the truncation order N can be obtained, for instance,
through the lowest order solution. Since all the intermediate numerical
tasks are accomplished within user-prescribed accuracy, there remains
the need of reaching convergence in the eigenfunction expansions and
automatically controlling the truncation order N, for a certain number of
fully converged digits requested in the final solution, at those positions of
interest.

The analytic nature of the inversion formulae allows for a direct testing
procedure at each specified position within the medium where a solution is
desired, and the truncation order N can be gradually increased, to fit the user
global error requirements over all the solution domain. The simple tolerance
testing formula employed is written as:

(37)

where N is increased until ε fits the user requested global error, and then N is
changed to assume the value of N*. Significant computational savings are
achieved with respect to a plain numerical integration with a fixed size
system.

For such elliptic systems (boundary value problems), in which numerical
integration is performed at once for all the solution domain, through an
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iterative procedure, there is no relative gain in repeating computations for a
reduced system size, since a more precise solution is already available.
Therefore, it is recommended that integration is started with an underestimated
value of N, and the truncation order can then be gradually increased in fixed
steps, N+∆N, until convergence is achieved in all desired locations. The lower
order results already available then serve as excellent initial guesses for the
iterative procedure implemented in the boundary value problem solver,
providing a faster solution of the higher order ODE system. The adaptive
scheme automatically controls the relative error on the final converged solution,
and offers in addition a costless error estimator at completion of the integration.

Through this approach, the numerical task is essentially reduced to the
solution of an ODE system and, since this is accomplished through the use of
widely available and well-documented subroutine packages, the computational
implementation becomes quite straightforward without a significant effect on
portability. A few representative applications are now considered, handled by
the computational procedure just described.

Applications
Isosceles triangular duct
In order to illustrate the application of the hybrid numerical-analytical solutions
presented in the previous sections, we consider fully developed laminar flow
inside an isosceles triangular duct, as illustrated in Figure 2, with the objective
of obtaining benchmark solutions for the velocity field for arbitrary values of
the aspect ratio. An exact solution is available in references[2,4] for θ = 45°
which corresponds to the isosceles right angle triangular duct, but analytical
explicit solutions are not available for an arbitrary value of the angle θ (or the
aspect ratio, m = h/a), although numerical results are available for some
cases[2,4]. The mathematical formulation of the problem for the velocity T(x,y)
is given by

(38)

where,

(39)

(40)

and the no-slip and symmetry boundary conditions for the velocity T(x,y) are

(41)(42)

(43)(44)
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From direct comparison of the systems (1)-(9) and (38)-(40), the following
correspondence between them is obtained

and the solution of the corresponding eigenvalue problem in the x variable is
readily determined as

(45)

(46)

(47)

The matrix coefficients Ai
*
j and Bi

*
j can be readily determined in analytical

form, as well as all the other related coefficients. Symbolic manipulation
packages can be employed or numerical integrators used to double-check the
analytical expressions.

The complete system of transformed equations is given by

(48)

Figure 2.
Geometry and co-

ordinate system for
isosceles triangular duct

Y

h

θ

0

1x (y) = a(1–y/h)

0 Xa

Symmetry line
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subject to the boundary conditions

(49)(50)

Equations (48)-(50) can be readily solved numerically and the transforms 
—
Ti(t)

are determined. Once the inversion formula is recalled and the average velocity
computed, Tav, the friction factor is evaluated from the definition

(51)

where Dh is the hydraulic diameter of the channel under consideration.

Circular segment duct
In order to illustrate further the application of the hybrid numerical-analytical
solutions presented, we consider fully developed laminar flow inside a duct
formed by the longitudinal section of a circular tube. Making use of the
definitions in Figure 2, with the objective of saving some space, the only required
change is in the definition of the irregular boundary, which is now given as:

(52)

for a circle of radius unit in dimensionless form, with H = 0 for the special case
of a hemispherical section.

Again, the required integrals are evaluated analytically, and the computa-
tions proceed as in the previous situation.

Elliptical segment duct
We have also considered fully developed laminar flow inside a segmented tube
of elliptical cross-section. Again, making use of the same definitions in Figure 2,
the only required change is in the definition of the irregular boundary, which is
now given by:

(53)

for an ellipse of semi-axis unit in dimensionless form, with a = 1 for the special
case of a hemispherical section.

Again, the required integrals are evaluated analytically, and the computa-
tions proceed as in the previous situations.

Results and discussion
Numerical results were obtained for the velocity fields and friction factors in
each of the three configurations described above by implementing the proposed
computational procedure for the complete solution, system (28)-(31), of the
original problem. An accuracy target of 10–5 was employed throughout the
calculations, and the tabulated numerical results are expected to be correct to
within ±1 in the fifth significant digit.
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Tables I to III illustrate the convergence rates of the eigenfunction
expansions for each case considered, respectively, the isosceles triangular duct,
the circular segment duct and elliptical segment duct, in terms of the product 
f.Re, which is essentially an illustration of the convergence of the average
velocity, Tav. Results for different truncation orders of system (28)-(33), namely,
N = 4, 8, 12, 16, and 20, are presented, together with the numerical results
from[3], for different values of the geometric parameters in each configuration.

f.Re
1/m N = 4 N = 8 N = 12 N = 16 Shah[3]

0.05 12.294 12.290 12.290 12.290 12.293
0.1 12.536 12.532 12.532 12.532 12.538
0.2 12.900 12.896 12.896 12.896 12.904
0.3 13.132 13.128 13.128 13.128 13.128
0.4 13.264 13.261 13.261 13.261 13.264
0.5 13.325 13.322 13.322 13.322 13.322
0.6 13.335 13.333 13.333 13.333 13.332
0.7 13.313 13.311 13.311 13.311 13.311
0.8 13.270 13.268 13.268 13.268 13.275
0.9 13.215 13.214 13.214 13.214 13.228
1.0 13.154 13.153 13.153 13.153 13.175
1.2 13.027 13.027 13.027 13.027 13.076

3–1⁄2
(Equil.) 13.336 13.334 13.333 13.333 13.333

Table I.
Convergence behaviour

and reference results
for friction factor

in the isosceles
triangular duct

f.Re
H N = 4 N = 8 N = 12 N = 16 Shah[3]

0.0 15.776 15.770 15.769 15.769 15.760
0.1 15.763 15.758 15.757 15.757 15.747
0.2 15.749 15.744 15.744 15.744 15.734
0.3 15.733 15.729 15.729 15.729 15.719
0.4 15.716 15.712 15.712 15.712 15.703
0.5 15.696 15.693 15.692 15.693 15.685
0.6 15.673 15.671 15.671 15.671 15.665
0.7 15.649 15.647 15.647 15.647 15.643
0.8 15.622 15.620 15.620 15.620 15.618
0.9 15.592 15.590 15.590 15.591 15.589
0.95 15.575 15.574 15.574 15.575 15.572

Table II.
Convergence behaviour

and reference results for
friction factor in the

circular segment duct
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In all three situations, and for different values of the related parameters, full
convergence to five digits is achieved even for N as low as 8, and the columns
for the largest N provide a set of benchmark results for reference purposes.
With respect to the comparisons against the numerical solutions compiled in[3],
a reasonably good agreement was obtained, validating such results up to three
or four digits, depending on the range of the geometric parameter for each type
of duct. For instance, the results of[3] for the isosceles triangular duct appear to
be correct to four digits for the lower values of l/m, becoming less accurate as
this factor is increased. The comparison for the elliptical segmented duct is not
considered here, since the proposed expression in[3] for this geometry seems to
be in error.

Figures 3-5 show isoline plots of the fully converged velocity field inside each
duct, in the same respective order, normalized by the average velocity, and for

f.Re
a/h N = 8 N = 12 N = 16 N = 20 N = 24

1.0 15.767 15.766 15.766 15.766 15.766
1.5 16.716 16.715 16.715 16.715 16.715
2.0 17.468 17.466 17.466 17.466 17.466
2.5 17.982 17.980 17.980 17.980 17.980
3.0 18.342 18.340 18.340 18.340 18.340
4.0 18.796 17.894 18.793 18.793 18.793
5.0 19.059 19.057 19.057 19.056 19.056
6.0 19.225 19.223 19.223 19.222 19.222
9.0 19.474 19.472 19.471 19.471 19.471

Table III.
Convergence behaviour 
and reference results for
friction factor in the
elliptical segment duct

Figure 3.
Velocity field inside an
isosceles triangular duct
(1/m = 1.25)
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some representative values of the governing geometric parameters, namely, 
1/m = 1.25 for the isosceles triangular duct, the hemispherical segment duct,
and a/h = 2.5 for the elliptical segment duct, which serve to demonstrate the
absence of oscillations in the eigenfunction expansions representations of the
potential, over the entire solution domain.

The code implemented can be directly employed for the many different
geometric configurations typical of compact heat exchangers, as discussed
in[2,3], as well as readily extended to more involved situations, such as in

Figure 4.
Velocity field inside

a hemispherical duct
(H = 0)
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Figure 5.
Velocity field inside an
elliptical segment duct
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turbulent flow applications, non-Newtonian fluids and stratified two-phase
flows. The formal solution presented is sufficiently general to include several
other applications in heat and fluid flow within irregular domains, either linear
or non-linear, provided the irregular boundary can be described as a function of
the co-ordinate chosen not to be eliminated through the integral transformation
process. For situations when this is initially not feasible, then a domain
decomposition needs to precede the application of the ideas here advanced, for
each sub-domain.
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